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Parametric solutions for breaking waves 
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Time-dependent flows such as occur in breaking surface waves are often most con- 
veniently described in parametric form, with the coordinate z and velocity potential 
x each expressed in terms of a third complex variable w and the time t .  

In  this paper we discuss some interesting flows given in terms of elementary func- 
tions of w and t .  Included are the Stokes 120' corner flow, the 45" rotor or rotating 
wedge, and a decelerated upwelling flow, with an exactly plane surface. 

Lastly it is shown that a class of cubic flows, which are related to the plane upwelling 
flow just mentioned, has a free surface that corresponds with remarkable accuracy 
to the forward face of an overturning, or plunging, breaker. 

1. Introduction 
The phenomenon of overturning exhibited by surface gravity waves in both deep 

and shallow water still lacks a satisfactory mathematical description. Figures 1 and 2 
illustrate two salient features of the flow. First, it must be highly time-dependent, 
with particle accelerations comparable to, or even much larger than, g. Mathematical 
techniques for dealing with free-surface flows of this kind have been suggested in some 
recent papers (Longuet-Higgins 1980a, b, 198l) , t  particularly in paper I .  

The second feature, illustrated more especially by figure 2, is that when the jet 
impinges on the forward face of the wave the relatively smooth flow becomes sharply 
discontinuous. Mathematically, the flow can be regarded as a multivalued function. 
It is as though the colliding particles are attempting to pass onto another sheet of the 
Riemann surface. This in turn implies at least a simple branch point in the velocity 
potential, located somewhere in the 'tube' of the breaking wave. 

(We are here interested only in describing the flow up to the moment of impact. 
Afterwards, a different type of description will become necessary, involving perhaps 
turbulence and entrained flow.) 

In  conventional descriptions of irrotational flow, the velocity potential x is usually 
expressed directly in terms of the complex coordinate z in the plane of motion, with 
the time t as an additional variable. In papers I and I1 a more flexible scheme waa 
suggested, in which x and z were each expressed m analytic functions of a third 
complex variable w ,  and also t .  As pointed out in Q 2 below, this has the advantage 
that the simplest kind of zero, where dzldw vanishes at some point w = w,,, say, 
corresponds to the simplest kind of branch point in the velocity potential x and its 

t To be referred to aa I, I1 and I11 respectively. 
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FIUURE 1. Profile of a plunging breaker (from Miller 1957). 

FIUURE 2. Tip of a plunging breaker striking the forward face of the wave 
(from Miller 1967). 

derivatives. Such a parametric description therefore seems possibly very appropriate 
to our problem. 

Some years ago John (1 953) suggested a particular type of parametric representa- 
tion in which the parameter o was assumed to be Lagrangian, in the sense of being 
constant following a given particle. This leads to certain simplifications (see I). How- 
ever, in deriving physical solutions, John’s chief preoccupation was to avoid the 
occurrence of zeros in dzldw, or at least to ensure that the corresponding singularities 
were annulled by zeros in the velocity gradient. In our problem, on the other hand, 
the zeros of dzldw are very much to be desired, provided that they occur fairly close 
to the domain of the flow, and outside it. 
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A second feature of John’s analysis was to assume the parameter w to take only 
real values at the free surface. This assumption enables a velocity potential x ( w ,  t )  
to be found in the interior, corresponding to a given motion of the free surface. For 
the general problem, the assumption is probably too restrictive. Nevertheless, our 
purpose here will be to examine whether certain simple flows that do accord with 
John’s second assumption (namely that w is real a t  the free surface) are of any use in 
describing the overturning of surface waves. 

Already some results in this direction have been given in a previous paper (Longuet- 
Higgins 1976). But all the flows described there were gravity-free, in the sense that 
the acceleration g did not appear in the solution. The flows were appropriate to a 
reference frame in free fall, or to the cases where the particle accelerations are large 
compared with 9. As pointed out in $ 5  below, gravity-free flows correspond to a 
certain linear and homogeneous boundary condition for z(w, t ) .  To include gravity, 
we must solve a non-homogeneous equation. But, once a particular integral is 
found, further solutions of the homogeneous equation may be added as a kind of 
complementary function. 

As a first example we present a simple parametric description of the well-known 
Stokes corner flow, in which gravity is of course included. An analogous flow is the 
‘ 45’ rotor’ discovered in paper 11, for which a parametric representation is given in $ 7. 

We then pass on to discuss an interesting type of gravity flow (9  8). This can be 
described as a ‘decelerated upwelling’, in which the pressure gradient from the surface 
velocities is exactly balanced by that due to the deceleration. Associated with this 
is a family of flows given as simple polynomials in w. Remarkably, it  appears that  
one of the cubic polynomials agrees very closely with the observed profiles of over- 
turning waves. 

Further discussion is given in 8 14. 

2. Parametric representation; branch points 
We consider incompressible, irrotational flow in two dimensions, where the velocity 

potential x = #+i$ is in general an analytic function of the position coordinate 
z = x + iy and of the time t .  Instead of expressing x directly as a function of z and t 
we assume that x and z are each analytic functions of a third complex variable w, 
and of t .  Thus by eliminating w between x and z we could if we wished express x directly 
as an analytic function of z, except at a singularity. 

Consider the flow in the neighbourhood of a branch point. If suffixes are used to 
denote partial differentiation, with respect to w or t ,  then the particle velocity is given 
by W*, where 

and an asterisk denotes the conjugate complex quantity. Suppose that z, has a simple 
zero at  w = wo, where z = zo. Then in the neighbourhood of this point we have 

z - zo - * (w - wo)2zw. (2.2) 

Hence w - wo cc (z  - Z0)*, (2.3) 

x - x o  - ( w - w o ) x , ~  (z-zo)* (2.4) 

and if x is a regular and analytic function of w with x,, + 0 then 
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also. This represents the simplest type of branch-point singularity, The velocity x: 
is O(z - z,)t and so less singular than in a source of vortex, where i t  is O(z -z0)-l. 

If, as in $4, the velocity W* is finite at  w = wo, as well as the potential x, then by 
a similar argument W - W, is generally O(z - 2,)) and x - xo is O(z - xo)g. 

3. Boundary conditions 
General expressions for the pressure p and its rate of change DplDt following a 

particle were given in paper I. Thus if g denotes gravity, and if the x-axis is taken 
pointing downwards, from Bernoulli’s equation we have 

-2p  = ( x t -  Wz,)+c.c.+ W W * - g ( z + z * ) - 2 f ,  (3.1) 

in which f is a function o f t  only, and ‘c.c.’ denotes the complex conjugate of the 
preceding terms. Also 

DP 
- 2 ~  = [ (x t t -  Wz, t )+2K(xwt-  Wz, , )+K2(xww- W ~ , , ) ] + c . c . - g ( W +  W * ) - 2 f t ,  

(3.21 
where 

. ,  
(3.3) 

At a (moving) free surface, the boundary conditions are that 

p = 0, Dp/Dt = 0. (3.4) 

zt = W*, K = 0, (3.5) 

In the special case when w is a Lagrangian coordinate, constant following a particle, 
then clearly 

and so (3.2) reduces to 

DP - 2 - = (X,, - Wz,,) + C.C. - g( w + W*) - 2f. 
Dt 

Some solutions making use of the equations (3.1) and ( 3 . 2 )  in this general form were 
given in papers I1 and 111. 

4. Method of John 
The above equations may be considered as a generalization of the approach of 

John (1953), who assumed, in addition to the flow being Lagrangian, that the para- 
meter w was real at the free surface. So a t  the free surface we have both 

w* = z,(w) (4.1) 

and x,/z, = W = z?(w*) = z f ( w )  ( 4 4  

xld = z,(w) z f ( w ) ,  (4-3) 

since w = w*. Therefore (at the free surface) 

and a flow satisfying at  least the kinematic boundary condition may be found by 
integrating with respect to w : 

(4.4) 
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This is always provided that x has no singularities, including zeros of z, unaccom- 
panied by zeros of W,, within the domain of the fluid. On the contrary, branch points 
outside the fluid may be welcome, for reasons gii en in Q 1.  

condition becomes especially 
simple for, since w is Lagrangian at the surface, P he particle acceleration there is 
simply ztt. Hence the pressure gradient is ztt - g, which must be normal to the free 
surface. But, since w is real, the tangent to the surface is in the direction of z,. So we 
must have 

ztt-g = zrz,, 

In  John’s formulation the dynamical boundar 

(4.5) 

In  the interior of the fluid, however, w is not necessarily Lagrangian. There, by 
where r is some function of w and t which is real on the boundary. 

virtue of (4.4), we have 

(see (4.3)), and so the particle velocity is given by 

xu = ~ , ( w ) Z : ( w )  (4.6) 

w = (X,/Z,)* = zt(u*), (4.7) 

not zt(w), as it would be if w were Lagrangian everywhere. Only a t  the free surface, 
where w = w*,  is the velocity given by zt(w) .  

For this reason we shall need the more general expressions for p and Dp/Dt given 
by (3.1) and (3.2). Making use of (4.7) these may be rewritten more explicitly as follows. 
First 

- 2 ~  = ( x t + ~ : )  +Zt (w*)  $ ( w )  - g ( Z +  z* )  - 2 f - [ z t ( W )  z:(w) +Zt(w*) z:(w*)]. (4.8) 

It will be noted that this is a function of w, w* and t .  If F(w,  w*,  t )  is any such function, 
it is clear that 

= q+KF,+K*F,., 
Dt (4.9) 

where K = Dw/Dt is given by (3.3). In the present case, since W* = zt(w*), we have 

K = [zt(w*) - zt(w)l/z,. (4.10) 

With F = -2p and K given by (4.10), we find in fact that (4.9) reduces to 

-2- DP = [ (x t t -  WZtt)+2Kz,~$(w)+ K 2 ~ , ~ t , ( ~ ) ] + ~ . ~ . - g ( W +  W*)-2 f t .  (4.11) 
Dt 

But from (4.6) Xot - WZ,, = zt*t(w) z,, (4.12) 

xw - wz,, = zt*W(w) 2,. (4.13) 

Hence (4.11) is equivalent to (3.2). 
Lastly we note that, though the particle acceleration a a t  the surface, in John’s 

formulation, is simply equal to ztt, in the interior it must be calculated from the more 
general formula 

(4.14) a=-z  Dt t( w* 1 = z&*) +K*zt,*(w*L 
D 

K* being the conjugate of (4.10). 
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5. Frames of reference 
Given a suitable function r(w, t ) ,  real when w is real, the boundary condition 

ztt-g = zrz, (5.1) 

may be regarded as a non-homogeneous linear differential equation for z(w, t ) .  Let 
zo(w,t) be any solution of (5.1). Then it is clear that zo+zl(w, t )  is also a solution, 
provided only that z1 satisfies the homogeneous equation 

ztt = zrz, (5.2) 

with the same integrating function r .  We may call zo a particular integral of the equa- 
tion (5.1). Then zl, in general form, is the complementary function, and zo+zl the 
complete integral . 

Since (5.2) can be derived from (5.1) simply by setting g = 0,  (5 .2 )  can be regarded 
also as a gravity-free form of (5.1), and we may think of solutions to (5 .2)  as free-fall 
solutions, that is solutions to (5.1) but seen in a reference frame moving with downward 
acceleration g .  

Thus, if z,,(w, t )  is any solution of (5.1), then 

z1 = zo - igt2 (5.3) 

is a solution to (5.2)) and conversely. It is easy to verify from (4.8) that the pressure 
p(w ,o* , t )  remains unaltered, apart from an additive function of the time t .  The 
corresponding velocities, however, will differ by the amount gt, which may be important 
in matching inner flows to an outer flow as t --f - co. 

In other respects the distinction between a solution to (5.1) and (5.2) need not be 
important, particularly in situations where the particle accelerations are large com- 
pared with g ,  or are highly variable. In  $ 6  we shall examine a flow which in one 
reference frame, including gravity, is steady, but in another, free-falling frame is an 
expanding, self-similar flow. 

6. The Stokes corner flow 
As a first application consider the familiar flow proposed by Stokes (1880) to 

describe the limiting form of a progressive wave crest, seen by an observer moving 
horizontally with the phase speed. Take the origin 0 at the wave crest and the axis 
of W ( z )  pointirig vertically downwards as in figure 3(a) .  (The wave is moving to the 
right.) A particle on the forward face of the wave travels up the slope with deceleration 
$9, the inclination to the vertical being $ 7 ~  or arccos 4. If each particle is labelled by 
the time w a t  which it reaches the wave crest, then the position z(w, t )  of the particle 
w at time t c w is given by 

(A characteristic of progressive motion is that z is a function of w - t only.) 

z = ) g  einl3 (w - t)2. (6.1) 

To verify the free-surface condition, note that 

2, = $g einl3 (w - t )  (6.2) 
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z-plane 

0 

( b )  
w-plane 

FIQUBE 3. Parametric representation of the Stokes corner flow 
(a) in the z-plane, (b) in the o-plane. 

Hence (5.1) is satisfied if 
r = -  4 3  

w - t ’  
which is real when w is real. Moreover 

z;(w) = - ig e - w 3  ( - t ) Y  (6.5) 

so from (4.3) xu = - ig2(w - t)2. (6.6) 

x = -1 1 2 9  2 ( w-t)3 = 4- $9 4 z #, (6.7) 

Integration with respect to w gives 

the well-known expression for the velocity potential in a Stokes corner flow. 
Paradoxically, when t > w the particles in the free surface, according to (6.1), 

reverse their direction and slide again down the forward face of the wave, instead of 
down the rear face as might be expected. The paradox is resolved by considering the 
situation in the w-plane (figure 3b) .  There it is seen that the forward face of the wave 
(OA in figure 3 a )  corresponds to the positive real axis of o-t, but the rear face OB 
corresponds to the line arg ( w - t )  = - 4 ~ .  The point w - t  = 0 is a branch point of z, 
and when w - t < 0 the particles go onto another sheet of the Riemann surface. 
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All the particles in the interior of the fluid correspond to 4 ( w )  < 0), and since w is 
not real the representation there is not Lagrangian. Thus the particles do not have to 
follow a path on which w is constant. 

It remains to verify that the two boundary conditions (3 .4)  are in fact satisfied on 
OB. This would follow from the symmetry of the expression (6 .9)  for x, but from (6 .1)  
it is less obvious. However, direct substitution into (4.8) gives us 

(6.8) 

(6-9) 

Clearly if%(@, t )  is a polynomial in w ,  then the expression forp(w, w*,  t )  will, by (4.8), 

2p = Qz(w - w * )  [(w - t )  etn/3 - (w* - t )  e-inlg], 

which vanishes both when w = w* (that is on 0.4, OA'), and when 

(that is on OB). 

be a polynomial in w and w*,  with a factor w - w*,  so we can write in general 

(w - t )  eW3 = (w* - t )  e-W3 

- _  - (w - w * )  G(w, w* ,  t ) ,  (6.10) 

and the free surface, apart from w = o*, will be given by G = 0. To show that the 
second condition D p / D t  = 0 is satisfied on this surface, i t  is sufficient to show that 
DG/Dt = 0 when G = 0. 

In the present case 
G (w - t )  eW3 - (@* - t )  @d3, (6.11) 

and a direct calculation using (4 .9)  with F = G gives 

(6.12) 

Since G is a factor of the right-hand side of (6.12),  it follows that DGIDt vanishes on 
OB as required. 

We remark that, if z(l) denotes the steady flow (6.1),  then 

zcz, = z(1) - *gt2 (6.13) 

represents a gravity-free flow satisfying the homogeneous boundary condition 

ztt = a m ,  
with r given by (6.4). Moreover 

~ ( 2 )  = &g eW3 S 

(6.14) 

(6.15) 

where f i  = (w  - t ) 2  - 2 e-W3 t 2  

= ~ ' - 2 ~ t +  J3it2 

= t '[(W/t)'-  2 (w / t )  + J 3  i]. (6.16) 

Higher-order polynomial expressions also exist satisfying (6.16) with the same 

z = ~ ~ - # ( l + + J 3 i ) t w ~ + #  2/3i t2~+$t' ,  (6.17) 

for which the contours p = 0 are shown in figure 4 .  One branch, other than the real 
axis of w ,  passes through the point w / t  = 1 .  The branch points, given by the vanishing 

Thus z@) represents a self-similar flow, expanding with time proportionally to t2. 

function as in (6.4).  For example, the cubic 
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FIUURE 4. Loci of p = 0 corresponding to the flow given by equation (7.8) 
in the o-plane. 

of z,, are at w/t  = 1 and 4 J3 i. Hence a possible domain of flow would appear to be the 
shaded area shown in figure 4. However, on further investigation it appears that the 
second boundmy condition Dp/Dt = 0 is not satisfied on any of the contours p = 0 
other than the real axis. Hence (6.17), and similar expressions of higher order, do not 
represent complete solutions. 

7. The 45" rotor 
An interesting exact solution of the homogeneous equation (5.2) is the expression 

(7.1) z = we-tl+i)t+i~, 

where E is a constant phase, to be determined. We have clearly 

ztt = tiwz,, 

so that z satisfies (6.2) with r = 2w. Moreover from (4.3) 

hence 

Choosing E = Qn, we may write 

which identifies the flow with the 45' 'rotating hyperbola' discovered in paper 11. 
The flow is sketched in figure 6 (a). 

14 FLY 121 
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FIQCJRE 5. The 45' rotating corner flow: (a) quation (7.1);  (b)  quation (7.10). 
In each case the flow is extended by reflection in the origin 0. 

Direct calculation using (4.8) gives for the pressure field 

- 2p = (w-w* )  [( 1 + i) w - (1 - i) w*]  e-Bt. (7.6) 

So, apart from the real axis w = w* there is a second free surface p = 0 given by 
arg w = -)IT. S e t h g  

we find also from (4.9) that 
G = [(1i-i)w-(1-i)w*]e-2t, (7.7) 

(7.8) -- - -26. DG 
Dt 

Hence the second boundary condition is also satisfied on G = 0. 
We see from (7.1) that 

(7.9) 

For points on the trailing face of the wedge (w = w * )  we have zt = - (1 + i) z. Hence 
the particles spiral inwards towards the centre along 45' spirals. 

For points on the other face, arg w = - $IT, we have w*/w = i, hence zt = (1 - C) z 
and the particles spiral outwards. 

The single-term expression (7.1) represents only the special case of the '45' rotor' 
when the boundary has a sharp corner. By adding to (7.1) a second term, so that 

(7.10) 

we obtain a more general flow in which the free surface is a 45'hyperbola, with rounded 
vertex, rotating about its centre z = 0 (see figure 5 b ) .  The potential ~ ( w ,  t )  satisfies 

W* = 2 w* - - 1 + i) w* e41+i)t+ie. t (  ) -  ( 

z = 0 e-(l+i)t+Sin/8 + 0-1 e(l-i)t+in/S 

e2it 
x = -22- J2i 

42 
and the equation of the free surface is 

#ie2itz2+c.c.+Jizz* = -1, 

(7.11) 

(7.12) 
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a special case of paper 11, equation (4.1). In the present formulation z (o , t )  has a 
branch point (z, = 0) when 

which lies at  a focus of the hyperbola, that is in the interior of the flow. But this is 
also a branch point of the velocity zt(w*), so that altogether the flow is non-singular. 

The flow just described is itself a highly special case of the clms of hyperbolic flows, 
with variable angle between the asymptotes, suggested in I1 m representing the tip 
of a plunging breaker. However, their parametric representation would in general 
seem to involve transcendental functions oft. 

0 = &in18 9 = 2e-ittinI4 Y (7.13) 

8. Upwelling flows 
We now discuss a different, and in some ways simpler, clam of flows than the two 

types just described. These may be called ‘upwelling flows’ for retmons that will 
become apparent. 

We first choose a very simple form of (5.1). In fact let us take r = - 2/ t ,  independent 
of w, and to save writing set 

io = a (8.1) 

so that the non-homogeneous boundary condition (5.1) becomes 

M z t t - g )  = Zm. (8.2) 

This must be satisfied when a is pure imaginary, that is when a + a* = 0. 
Clearly (8.2) is satisfied by the expression 

Moreover 

so from (4.6) 

giving 

This flow is shown in figure 6. The free surface W ( a )  = 0 is the y-axis, x = 0. The 

(8.8) 

(8.9) 
w and the streamlines are = -- = constant, 
t 

which are rectangular hyperbolae. For t > 0 the flow represents a decelerated up- 
welling, in which the vertical and horizontal components of flow are given by 

velocity potential is 
2% - ya #=--  

2t 

9x=-,,  X #,=, Y (8.10) 

respectively, the axis of x being vertically downwards. 

note that the horizontal pressure gradient is in general given by 
To verify that horizontal surface x = 0 is indeed a surface of constant pressure, 

(8.11) 
14-2 
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Y 

+ 
FIGURE 6. Streamlines of the upwelling flow (8.7). 

X 

where (u,v) = (q5z,q5v). From (8.10) the terms on the right of (8.11) are equal to 
- y / t 2 ,  0 and y / t2  respectively. Hence pv = 0 everywhere. Alternatively we may 
remark that in the Bernoulli equation 

-P = q5t+#(d;+q5:)-9x (8.12) 

For t < 0,  q5= becomes positive (when x > 0), and instead of a decelerated upwelling 
the acceleration term q5t is exactly balanced by the usual pressure defect - #(V$)2. 

we have an accelerated downwelling. 

9. Complementary upwelling flows 

to say, we seek solutions to the homogeneous boundary condition 

to be satisfied when a + a* = 0.  

We now seek flows complementary to the upwelling flow described in $8. That is 

)tZM = Z, (9.1) 

Let us try the polynomial expression 

z = b,wn+bn-lwn-l+ ... +bo,  (9.2) 

the coefficients b, being functions of the time t only. Substituting into (9. l ) ,  we obtain 

#tho = b,. I 
Clearly b, must be of the form At + B, with A and B constant. Since the equations 
(9.3) are linear, the simplest solutions of (9.2) can be separated into two fundamental 



Parametric solutions for breaking waves 416 

classes, those in which A = 1, B = 0, and those in which A = 0, B = 1. Denoting these 
by P, and Q, respectively, we find by straightforward integration, aa far as n = 3, 

and 

The complete polynomial solution will be of the form 

Each of the flows P, is self-similar, as can be seen by writing it in the form 

P,(w, t )  = tn+'P,(a/t, 1). (9.7) 

In  fact these flows are limiting cases of the self-similar flows described in 8 9 of Longuet- 
Higgins (1976), in the limit as h + 1. 

On the other hand, the flows represented by &, are not self-similar, nor is any com- 
bination of the P, and Q, involving two or more non-zero coefficients A, or B,. 

10. Discussion: linear flows 
To interpret the solutions physically, we note first that all expressions linear in a 

must correspond to a free-surface profile that is a straight line. Similarly, any expres- 
sion that is quadratic in w has a surface profile that is a parabola, whose orientation 
and dimensions may vary in time. Every solution of the third degree in a corresponds 
to a parametric cubic, and so on. 

As an example consider the linear flow Pl. We have then 

z = tw+t2, (10.1) 

so 2, = t ,  2, = w + 2t. (10.2) 

To find the velocity potential x we note that on the free surface w* = - a, so tEe 
general boundary condition 

X m  = 4 - 4 z m ( 4  (10.3) 

gives xm = - ta + 2t2, (10.4) 

hence x = - & 7 2 + 2 t a  (10.5) 

to within a function of the time t .  The pressure p is now found from the equivalent of 
(4.8), namely 

-2p = (xt+xt*)+Z:(-W)Z,(-Wir*)-2f-[Z,(W)Zt*( -w)+z:(w*)z~(-w*)]. (10.6) 
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With suitable choice off this gives 

- 2p = (a + w*) [i(a + a*) + 2t]. 

The locus of p = 0 is therefore 

a + w *  = 0, z+z*  = 2t2, 

together with the parallel line 

a + w *  = -4t, z+z*  = -2t2. 

To calculate Dp/Dt we use the general formula analogous to (4.9), namely 

I$ + K'P!  + K'*Fw., 
DF 
Dt 
-=  

where F = - 2p and K' = [zt( - a*) - xt(a)]/xm. 

DP - = (a + a*) [(w + a*)/t + 11. 
Dt 

Hence 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

This vanishes on the free surface (10.8) but not on the parallel surface (10.9). In other 
words, (10.9) represents a surface that is not moving with the fluid particles. 

Clearly the non-homogeneous flow (8.3) is a special case of the flow PI when seen 
in an accelerated frame of reference. 

11. Quadratic flows 
The second-order flows (n = 2) are the simplest to have a branch point (2, = 0) 

in the finite part of the plane. This occurs always at  the focus of the parabola. Thus for 
P2 we have 

(11.1) 

which vanishes when a = - t, x = - it3. The particle velocity W* is given by 

2, = 2ta + 2t2, 

w = Z f (  - a) = we- 4ta + 2t2, (11.2) 

and since W, = 2 a  - 4t, which does not vanish at the branch point, this is a genuine 
singularity. The flow must therefore be taken in some domain excluding the focus, 
i.e. outside the parabola. 

The corresponding velocity potential is found to be 

x = 4ta4 - 2 ~ ~ 3  - 2t3aa + 4 ~ ~ 3 ,  (11.3) 

and the pressure field is given by 

2p = ( W + W * ) [ ~ ( W - W * ) ( W ~ - W * ~ ) + ~ ~ ( W ~ + W * ~ ) - ~ ~ ~ ~ ( W + W * ) - ~ ~ ~ ] .  (11.4) 

The loci of p = 0 in the planes of w and x are shown in figure 7. On the branches of 
the locus other than w + a* = 0 it is found that Dp/Dt does not vanish, nor is it a 
function oft only, so these do not correspond to free surfaces. 

Similar remarks apply to the flow x =. Q2. 
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FIGURE 7. The quadratic flow z = P2. (a) Free surface in the z-plane; 
(b)  contours of p = 0 in the w-plane. 

12. Cubic flows 

surface can intersect itself. 
The case n = 3 is of special interest as being the simplest case for which the free 

Consider the flow P3. We have 

(12.1) 
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z =P, 

2 t 

4i 1 wit-plane 

T A A' I 
-4 0 4 

( b )  

FIGURE 8. The cubic upwelling z = P,. (a) Free surface in the z-plane; 
(a) contours of p = 0 and branch points in the w-plane. 

At the free surface, w being imaginary, we may write a/t = ip, p real, so on separating 
real and imaginary parts in ( l2 . i ) ,  

(12.2) 

The profile is shown in figure 8(a). It intersects the x-axis when p = 0 and f ,/2, 
that is in the points z/t4 = & and - 12- respectively, the latter being a double point on 
the curve. Stationary values of y occur when p2 = Q and z/t4 = -4  & JE i. The 
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'aspect ratio' of the loop, that is to say the width of the loop at its widest section 
divided by the distance between the vertex and the node, is 

$ Jij = 0.3629. (12.3) 

The maximum width is one-third of the way from the vertex to the node. 
The branch points of z are given by the vanishing of 

z, = 3tw2 + 6t% + 2t3, (12.4) 

that is w / t = - l ? J &  (12.5) 

so z/t4 = i( 1 k 244). (12.6) 

These are marked B and B in figure 8 (a). In  figure 8 (b) B lies very close to the origin 
and B is not shown because it lies on another sheet of the Riemann surface. 

The velocity potential corresponding to (12.1) is found to be 

= - itwe + +&am5 + 4t3w4 - 3#t4w3 - 2t6d + it%, (12.7) 

and the pressure is given by 

2~ = [ - *(w' + w'w*') -$t (4d - ~w'w*') + 6t2(2m4 - w%* - 3 ~ % * ~ )  

+ 4t'(7w3 + 9m2w*) - 18t4(w2 + ~ a * )  - 8t5w] + C.C. (12.8) 

13. Comparison with observation 
In  figure 9 we compare the observed surface profile of figure 1 with the curve of 

equation (12.2). The agreement with the forward face of the wave is remarkable. 
A second comparison can be made with the recent numerical calculations of breaking 

waves by Vinje & Brevig (1981)' shown in figure 10. Inserted in the figure are straight 
lines, each representing the axis of symmetry of a cubic curve fitted to the lower part 
of the profile. Table 1 shows the lengths of the corresponding axes; 2a is the distance 
between the two points where the curve intersects the axis, and 2b is twice the maxi- 
mum distance of the lower part of the profile from the axis. The 'aspect ratios ' b/a 
are given in the third column of table 1, and will be seen to be close to the theoretical 
ratio (12.3). 

In  figure 10 the orientation of the axes is nearly constant; the angle of inclination 
of the horizontal vanes only between about 37" and 47'. The length 2b of the minor 
axis is shown as a function of the time in figure 11. The plotted points have been fitted 
with a curve of the form C(t - tJ4, where to > 0. If this were followed precisely it would 
indicate that the dimensions of the 'tube' tended to zero as t + to. 

The curve of figure 8 may indeed be typical of plunging breakers. It was remarked 
by New (1981) that profiles were very often fitted quite accurately by an ellipse with 
axes in the ratio 43: 1. In figure 12 we show a comparison between the cbbic curve of 
figure 8(a)  and a '43-ellipse' having the same minimum radius of curvature. Again 
the agreement is close. 

The only part of the free surface described so far is the forward face of the wave. 
However, the complete locus p = 0 (see (12.8)) contains another branch within the 
fluid, labelled I1 in figure 13(a). On this branch the second boundary condition 
Dp/Dt = 0 is not generally satisfied (as i t  is on I). Moreover the curve is symmetric 
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FIGURE 9. Comparison of z = A3P3 with the observed profile in figure 1. 

9 

FIQURE 10. Successive profiles of a wave breaking in deep water 
(after Vinje & Brevig 1981, figure 4.12). 

about the real axis of x.  Nevertheless, since the pressure p has a stationary point 
(saddle point) on the real axis between I and 11, it appears that only a slight asymmetric 
perturbation of the flow would be sufficient to alter the free surface to the form ITI, 
corresponding very nearly to the surface of a plunging breaker. Near the tip of the jet, 
the perturbed flow may locally take the form described in paper 11. 

Figure 13 (b) shows the same flow z = P3 but at a different time t = 0.5. Apart from 
the perturbation, which is seen to be a small part of the total flow, the surfaces in 

. figures 13 (a) and 13 ( b )  are precisely similar. 
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t 

6 
7 
8 
9 
10 
11 
12 
13 

2a (mm) 
64.0 
55.5 
52-0 
41.5 
40.5 
36.5 
32.5 
29.5 

2b (mm) 

26.0 
21.0 
19.0 
15.0 
14.0 
12.5 
11.2 
10.5 

b/a 
0.41 
0.38 
0.37 
0.36 
0.36 
0.34 
0.35 
0.36 

TABLE 1. Measured parameters of deep-water wave crests, 
from Vinje & Brevig (1981, figure 4.12) 

e 
3 7 O  
38" 
39O 
40' 
41" 
43" 
45O 
47O 

B Vinje & Brevig (1981) 
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FIGURE 11. Time variation of the length of the minor axis in figure 10. 

In  the expression for the pressure p the terms of highest order in w are given by 

(13.1) 

so that one of the asymptotes is argw = - @, corresponding to a surface inclined 
asymptotically at 120' to the forward face of the wave. 

The second solutions &, will not be discussed in detail, except to remark that Q3 
has one branch point on either side of the free surface w = o* whenever In It] < Q. 
Thus z = Q3, unlike z = P;, is not a physically possible flow. However, it  may be worth 
noting that over limited intervals of time the expression 

x = P3 + i7Q3 (1 3.2) 
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- \  111 
\ 

FIQURE 12. Comparison of the cubic curve z = P8 given by (12.2) 
and an ellipse having axes in the ratio 4 3 :  1. 

I I11 

FIQURE 13. Contours of the pressure for z = Pa in the physical plane: 
(a) when t = 1 ;  (a) when t = 0.5. 
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FIQURE 14. Successive profiles of the free surface for the flow z = PJ + 0. liQJ. 

where 7 is a real, positive constant, < 1, represents a flow in which the asymptotes 
rotate clockwise, as does the nodal loop (see figure 14). This agrees qualitatively with 
the numerical profiles shown in figure 10. 

14. Conclusion 
We have shown how a parametric description of the fluid flow, involving only 

elementary functions of the parameter w, can describe some outstanding features of an 
overturning gravity wave, particularly the asymptotic form of the front face of the 
wave. We have confirmed the suggestion in I11 that the analytic description probably 
involves a branch point. We have also described the flow near the tip of the ‘jet’, in 
a special case. 

A complete solution should ideally give an account of the whole development of 
the flow, including the rear face of the wave. There is reason to believe that this may 
be possible by combining or perturbing the solutions given in the present paper. 
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